Code
load_data("ecb/JDF_ICP_COICOP_INX.RData")
load_data("ecb/FREQ.RData")
load_data("ecb/REF_AREA.RData")
load_data("ecb/ADJUSTMENT.RData")
load_data("ecb/ICP_ITEM.RData")
load_data("ecb/STS_INSTITUTION.RData")
load_data("ecb/ICP_SUFFIX.RData")Data - ECB
load_data("ecb/JDF_ICP_COICOP_INX.RData")
load_data("ecb/FREQ.RData")
load_data("ecb/REF_AREA.RData")
load_data("ecb/ADJUSTMENT.RData")
load_data("ecb/ICP_ITEM.RData")
load_data("ecb/STS_INSTITUTION.RData")
load_data("ecb/ICP_SUFFIX.RData")JDF_ICP_COICOP_INX %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
group_by(ICP_ITEM, Icp_item, ICP_SUFFIX) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}JDF_ICP_COICOP_INX %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
group_by(ICP_ITEM, Icp_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}JDF_ICP_COICOP_INX %>%
left_join(ICP_SUFFIX, by = "ICP_SUFFIX") %>%
group_by(ICP_SUFFIX, Icp_suffix) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| ICP_SUFFIX | Icp_suffix | Nobs |
|---|---|---|
| INX | Index | 1151421 |
JDF_ICP_COICOP_INX %>%
group_by(UNIT) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| UNIT | Nobs |
|---|---|
| PURE_NUMB | 1151421 |
JDF_ICP_COICOP_INX %>%
group_by(TITLE) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}JDF_ICP_COICOP_INX %>%
left_join(FREQ, by = "FREQ") %>%
group_by(FREQ, Freq) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| FREQ | Freq | Nobs |
|---|---|---|
| M | Monthly | 1151421 |
JDF_ICP_COICOP_INX %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}JDF_ICP_COICOP_INX %>%
left_join(ADJUSTMENT, by = "ADJUSTMENT") %>%
group_by(ADJUSTMENT, Adjustment) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}JDF_ICP_COICOP_INX %>%
left_join(STS_INSTITUTION, by = "STS_INSTITUTION") %>%
group_by(STS_INSTITUTION, Sts_institution) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| STS_INSTITUTION | Sts_institution | Nobs |
|---|---|---|
| 4 | Eurostat | 1151421 |
JDF_ICP_COICOP_INX %>%
group_by(UNIT_INDEX_BASE) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| UNIT_INDEX_BASE | Nobs |
|---|---|
| 2015 = 100 | 1132396 |
| 2005 = 100 | 19025 |
JDF_ICP_COICOP_INX %>%
group_by(DECIMALS) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| DECIMALS | Nobs |
|---|---|
| 2 | 989160 |
| 1 | 162261 |
JDF_ICP_COICOP_INX %>%
group_by(TIME_FORMAT) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| TIME_FORMAT | Nobs |
|---|---|
| P1M | 1151421 |
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("DE", "FR", "GB"),
# 000000: HICP - Overall index
ICP_ITEM == "000000",
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Ref_area)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.3),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("FR"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("SERV00", "040000", "IGXE00"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("DE"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("SERV00", "040000", "IGXE00"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("GR"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("SERV00", "040000", "IGXE00"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("PT"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("SERV00", "040000", "IGXE00"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("DE"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("110000", "120000", "030000", "041000"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.35, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("FR"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("110000", "120000", "030000", "041000"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.25),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("GR"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("110000", "120000", "030000", "041000"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.25),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("PT"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("110000", "120000", "030000", "041000"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.25),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("DE"),
# 000000: HICP - Overall index
ICP_ITEM %in% c("NRGY00", "ELGAS0", "045500"),
FREQ == "M",
ICP_SUFFIX == "INX") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue)) %>%
ggplot() +
geom_line(aes(x = date, y = obsValue, color = Icp_item)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.75, 0.25),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 200, 5),
labels = dollar_format(accuracy = 1, prefix = "")) +
ylab("HICP - Overall index") + xlab("")
JDF_ICP_COICOP_INX %>%
filter(REF_AREA %in% c("GR"),
FREQ == "M",
UNIT_INDEX_BASE == "2015 = 100",
UNIT == "PURE_NUMB") %>%
left_join(ICP_ITEM, by = "ICP_ITEM") %>%
month_to_date() %>%
filter(!is.na(obsValue),
date %in% as.Date(paste0(c(2012, 2014), "-01-01"))) %>%
select(date, ICP_ITEM, TITLE, obsValue) %>%
group_by(ICP_ITEM, TITLE) %>%
summarise(`% change` = round(100*(obsValue[2] - obsValue[1])/obsValue[1], 1)) %>%
arrange(`% change`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}