LAST_DOWNLOAD |
---|
2022-06-05 |
Consumer Price Index - Urban Wage Earners and Clerical Workers (Current Series) - CW
Data - BLS
Info
LAST_DOWNLOAD
LAST_COMPILE
LAST_COMPILE |
---|
2024-06-20 |
Last
date | Nobs |
---|---|
2022-04-01 | 62 |
cw.area
Code
%>%
cw.area if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
cw.item
Code
%>%
cw.item if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
cw.seasonal
Code
%>%
cw.seasonal if (is_html_output()) print_table(.) else .} {
seasonal_code | seasonal_text |
---|---|
S | Seasonally Adjusted |
U | Not Seasonally Adjusted |
cw.periodicity
Code
%>%
cw.periodicity if (is_html_output()) print_table(.) else .} {
periodicity_code | periodicity_name |
---|---|
R | Monthly |
S | Semi-Annual |
Longest Series (starting before 1950)
Code
%>%
cw.series filter(begin_year <= 1950) %>%
arrange(begin_year) %>%
select(series_id, series_title, begin_year, end_year) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Longest Series
All
Code
1.AllItems %>%
cw.data.bind_rows(cw.data.11.USFoodBeverage) %>%
bind_rows(cw.data.12.USHousing) %>%
bind_rows(cw.data.13.USApparel) %>%
bind_rows(cw.data.14.USTransportation) %>%
filter(series_id %in% c("CWUR0000SA0", "CWUR0000SAA",
"CWUR0000SAF1", "CWUR0000SEHA")) %>%
left_join(cw.series, by = "series_id") %>%
left_join(cw.item, by = "item_code") %>%
month_to_date() %>%
ggplot(.) + theme_minimal() + xlab("") +
ylab("Consumer Price Index") +
geom_line(aes(x = date, y = value, color = item_name)) +
geom_rect(data = nber_recessions %>%
filter(Trough >= as.Date("1914-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1910, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = c(seq(0, 50, 10), seq(100, 500, 50)),
labels = dollar_format(accuracy = 1, prefix = "")) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.2, 0.80),
legend.title = element_blank())
1914-1945
Code
1.AllItems %>%
cw.data.bind_rows(cw.data.11.USFoodBeverage) %>%
bind_rows(cw.data.12.USHousing) %>%
bind_rows(cw.data.13.USApparel) %>%
bind_rows(cw.data.14.USTransportation) %>%
filter(series_id %in% c("CWUR0000SA0", "CWUR0000SAA",
"CWUR0000SAF1", "CWUR0000SEHA")) %>%
left_join(cw.series, by = "series_id") %>%
left_join(cw.item, by = "item_code") %>%
month_to_date() %>%
filter(date <= as.Date("1945-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") +
ylab("Consumer Price Index") +
geom_line(aes(x = date, y = value, color = item_name)) +
geom_rect(data = nber_recessions %>%
filter(Peak <= as.Date("1945-01-01"),
>= as.Date("1914-01-01")),
Trough aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1910, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = seq(-10, 500, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank())
1970-
Code
1.AllItems %>%
cw.data.bind_rows(cw.data.11.USFoodBeverage) %>%
bind_rows(cw.data.12.USHousing) %>%
bind_rows(cw.data.13.USApparel) %>%
bind_rows(cw.data.14.USTransportation) %>%
filter(series_id %in% c("CWUR0000SA0", "CWUR0000SAA",
"CWUR0000SAF1", "CWUR0000SEHA")) %>%
left_join(cw.series, by = "series_id") %>%
left_join(cw.item, by = "item_code") %>%
month_to_date() %>%
filter(date >= as.Date("1970-01-01")) %>%
group_by(item_name) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + theme_minimal() + xlab("") +
ylab("Consumer Price Index") +
geom_line(aes(x = date, y = value, color = item_name)) +
geom_rect(data = nber_recessions %>%
filter(Peak <= as.Date("2025-01-01"),
>= as.Date("1970-01-01")),
Trough aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1910, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_log10(breaks = seq(0, 1000, 50),
labels = dollar_format(accuracy = 1, prefix = "")) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank())
1990-
Code
1.AllItems %>%
cw.data.bind_rows(cw.data.11.USFoodBeverage) %>%
bind_rows(cw.data.12.USHousing) %>%
bind_rows(cw.data.13.USApparel) %>%
bind_rows(cw.data.14.USTransportation) %>%
filter(series_id %in% c("CWUR0000SA0", "CWUR0000SAA",
"CWUR0000SAF1", "CWUR0000SEHA")) %>%
left_join(cw.series, by = "series_id") %>%
left_join(cw.item, by = "item_code") %>%
month_to_date() %>%
filter(date >= as.Date("1990-01-01")) %>%
group_by(item_name) %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot(.) + theme_minimal() + xlab("") +
ylab("Consumer Price Index") +
geom_line(aes(x = date, y = value, color = item_name)) +
geom_rect(data = nber_recessions %>%
filter(Peak <= as.Date("2025-01-01"),
>= as.Date("1990-01-01")),
Trough aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1910, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 1000, 10),
labels = dollar_format(accuracy = 1, prefix = "")) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank())