source | dataset | Title | Download | Compile |
---|---|---|---|---|
bis | TOTAL_CREDIT | Credit to the non-financial sector | 2024-05-10 | [2024-08-09] |
ecb | BLS | Bank Lending Survey Statistics - BLS | 2024-12-29 | [2024-12-29] |
Credit to the non-financial sector
Data - BIS
Info
LAST_DOWNLOAD
LAST_COMPILE
LAST_COMPILE |
---|
2024-12-29 |
Last
date | Nobs |
---|---|
2023-04-01 | 1133 |
2023-01-01 | 1133 |
TC_LENDERS, Lending sector
Code
%>%
TOTAL_CREDIT group_by(TC_LENDERS, `Lending sector`) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TC_LENDERS | Lending sector | Nobs |
---|---|---|
A | All sectors | 136165 |
B | Banks, domestic | 38137 |
TC_BORROWERS, Borrowing sector
Code
%>%
TOTAL_CREDIT group_by(TC_BORROWERS, `Borrowing sector`) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TC_BORROWERS | Borrowing sector | Nobs |
---|---|---|
P | Private non-financial sector | 76571 |
G | General government | 27944 |
H | Households & NPISHs | 26375 |
N | Non-financial corporations | 26048 |
C | Non financial sector | 17364 |
VALUATION, Valuation
Code
%>%
TOTAL_CREDIT group_by(VALUATION, `Valuation method`) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
VALUATION | Valuation method | Nobs |
---|---|---|
M | Market value | 157575 |
N | Nominal value | 16727 |
TC_ADJUST, Type of adjustment
Code
%>%
TOTAL_CREDIT group_by(TC_ADJUST, `Adjustment`) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TC_ADJUST | Adjustment | Nobs |
---|---|---|
A | Adjusted for breaks | 142415 |
U | Unadjusted | 31887 |
iso3c, iso2c, Borrowers’ country
Code
%>%
TOTAL_CREDIT arrange(iso3c, date) %>%
group_by(iso3c, iso2c, `Borrowers' country`) %>%
summarise(Nobs = n(),
start = first(date),
end = last(date)) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(`Borrowers' country`)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
FREQ, Frequency
Code
%>%
TOTAL_CREDIT group_by(FREQ, Frequency) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
FREQ | Frequency | Nobs |
---|---|---|
Q | Quarterly | 174302 |
UNIT_TYPE, Unit type
Code
%>%
TOTAL_CREDIT group_by(UNIT_TYPE, `Unit type`) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
UNIT_TYPE | Unit type | Nobs |
---|---|---|
XDC | Domestic currency (incl. conv. to current ccy made using a fix parity) | 77951 |
USD | US dollar | 47282 |
770 | Percentage of GDP | 46748 |
799 | Percentage of GDP (using PPP exchange rates) | 2321 |
All
Sweden
All
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("SE"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A") %>%
TC_ADJUST ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(6)[1:5]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
1980-2000
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("SE"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A",
TC_ADJUST >= as.Date("1980-01-01"),
date <= as.Date("1998-01-01")) %>%
date ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.2, 0.85),
legend.title = element_blank())
Peru
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("PE"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A") %>%
TC_ADJUST ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(6)[1:5]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
Netherlands
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("NL"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A") %>%
TC_ADJUST ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(6)[1:5]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
Denmark
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("DK"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A") %>%
TC_ADJUST ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(6)[1:5]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
France
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("FR"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A") %>%
TC_ADJUST ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(6)[1:5]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
United States
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("US"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A") %>%
TC_ADJUST ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(6)[1:5]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
Korea
All
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("KR"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS %in% c("G", "H", "N"),
TC_BORROWERS == "M",
VALUATION == "A") %>%
TC_ADJUST left_join(tibble(TC_BORROWERS = c("G", "H", "N"),
Tc_borrowers = c("Dette publique", "Dette des ménages", "Dette des entreprises"))) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Dette / PIB en Corée du Sud (en % ou plutôt années de PIB)") +
geom_line(aes(x = date, y = value/100, color = Tc_borrowers)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 10, p = "")) +
theme(legend.position = c(0.15, 0.85),
legend.title = element_blank())
1990-
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("KR"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS %in% c("G", "H", "N"),
TC_BORROWERS >= as.Date("1990-01-01"),
date == "M",
VALUATION == "A") %>%
TC_ADJUST left_join(tibble(TC_BORROWERS = c("G", "H", "N"),
Tc_borrowers = c("Dette publique", "Dette des ménages", "Dette des entreprises"))) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Dette / PIB en Corée du Sud (en % ou plutôt années de PIB)") +
geom_line(aes(x = date, y = value/100, color = Tc_borrowers)) +
scale_x_date(breaks = seq(1940, 2022, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 10, p = "")) +
theme(legend.position = c(0.15, 0.85),
legend.title = element_blank())
2005-
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("KR"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS %in% c("G", "H", "N"),
TC_BORROWERS >= as.Date("2005-01-01"),
date == "M",
VALUATION == "A") %>%
TC_ADJUST left_join(tibble(TC_BORROWERS = c("G", "H", "N"),
Tc_borrowers = c("Dette publique", "Dette des ménages", "Dette des entreprises"))) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Dette / PIB en Corée du Sud (en % ou plutôt années de PIB)") +
geom_line(aes(x = date, y = value/100, color = Tc_borrowers)) +
scale_x_date(breaks = seq(1940, 2022, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 10, p = "")) +
theme(legend.position = c(0.15, 0.85),
legend.title = element_blank())
Spain
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("ES"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A") %>%
TC_ADJUST ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(6)[1:5]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
All but Non financial sector
Eurozone
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("XM", "US"),
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A",
TC_ADJUST %in% c("P", "H", "N")) %>%
TC_BORROWERS filter(date >= as.Date("2000-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`, linetype = iso2c)) +
scale_x_date(breaks = seq(1940, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
United States
Code
%>%
TOTAL_CREDIT filter(iso2c == "US",
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A",
TC_ADJUST %in% c("P", "H", "N")) %>%
TC_BORROWERS ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
France
Code
%>%
TOTAL_CREDIT filter(iso2c == "FR",
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A",
TC_ADJUST %in% c("P", "H", "N")) %>%
TC_BORROWERS ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 25),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
Germany
Code
%>%
TOTAL_CREDIT filter(iso2c == "DE",
== "770",
UNIT_TYPE == "A",
TC_LENDERS == "M",
VALUATION == "A",
TC_ADJUST %in% c("P", "H", "N")) %>%
TC_BORROWERS ggplot(.) + theme_minimal() + xlab("") + ylab("Credit to GDP (% of GDP)") +
geom_line(aes(x = date, y = value/100, color = `Borrowing sector`)) +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 20),
labels = percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.position = c(0.2, 0.75),
legend.title = element_blank())
Non-financial corporations
Table
Code
%>%
TOTAL_CREDIT filter(UNIT_TYPE == "770",
%in% c("N"),
TC_BORROWERS == "A",
TC_LENDERS == "M") %>%
VALUATION group_by(iso2c, `Borrowers' country`) %>%
arrange(date) %>%
summarise(date = last(date),
value = last(value)) %>%
arrange(-value) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(`Borrowers' country`)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
France, Germany, Italy
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("FR", "DE", "IT"),
== "770",
UNIT_TYPE %in% c("N"),
TC_BORROWERS == "A",
TC_LENDERS == "M") %>%
VALUATION left_join(colors, by = c("Borrowers' country" = "country")) %>%
rename(`Reference area` = `Borrowers' country`) %>%
mutate(value = value/100) %>%
group_by(date) %>%
filter(n() == 3) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Debt to GDP (% of GDP)") +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.15, 0.75),
legend.title = element_blank())
Private non-financial sector (% of GDP)
Table
Code
%>%
TOTAL_CREDIT filter(UNIT_TYPE == "770",
%in% c("N"),
TC_BORROWERS == "A",
TC_LENDERS == "M") %>%
VALUATION group_by(iso2c, `Borrowers' country`) %>%
arrange(date) %>%
summarise(date = last(date),
value = last(value)) %>%
arrange(-value) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(`Borrowers' country`)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Luxembourg, Honk Kong SAR, Sweden
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("LU", "FI", "SE"),
== "770",
UNIT_TYPE %in% c("N"),
TC_BORROWERS == "A",
TC_LENDERS == "M") %>%
VALUATION left_join(colors, by = c("Borrowers' country" = "country")) %>%
rename(`Reference area` = `Borrowers' country`) %>%
mutate(value = value/100) %>%
group_by(date) %>%
filter(n() == 3) %>%
mutate(color = ifelse(iso2c == "HK", color2, color)) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Debt to GDP (% of GDP)") +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.15, 0.75),
legend.title = element_blank())
Spain, Ireland
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("IE", "ES"),
== "770",
UNIT_TYPE %in% c("N"),
TC_BORROWERS == "A",
TC_LENDERS >= as.Date("2000-01-01"),
date <= as.Date("2012-01-01"),
date == "M") %>%
VALUATION left_join(colors, by = c("Borrowers' country" = "country")) %>%
rename(`Reference area` = `Borrowers' country`) %>%
mutate(value = value/100) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Debt to GDP (% of GDP)") +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1940, 2020, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.15, 0.75),
legend.title = element_blank())
France, Germany, Italy, Spain, United States
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("FR", "DE", "IT", "ES", "US"),
== "770",
UNIT_TYPE %in% c("N"),
TC_BORROWERS == "A",
TC_LENDERS == "M") %>%
VALUATION left_join(colors, by = c("Borrowers' country" = "country")) %>%
rename(`Reference area` = `Borrowers' country`) %>%
mutate(value = value/100) %>%
group_by(date) %>%
filter(n() == 5) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Debt to GDP (% of GDP)") +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_5flags +
scale_x_date(breaks = seq(1940, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.15, 0.75),
legend.title = element_blank())
Japan, United Kingdom, United States
Code
%>%
TOTAL_CREDIT filter(iso2c %in% c("JP", "GB", "US"),
== "770",
UNIT_TYPE %in% c("N"),
TC_BORROWERS == "A",
TC_LENDERS == "M") %>%
VALUATION left_join(colors, by = c("Borrowers' country" = "country")) %>%
rename(`Reference area` = `Borrowers' country`) %>%
mutate(value = value/100) %>%
group_by(date) %>%
filter(n() == 3) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("Debt to GDP (% of GDP)") +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1940, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 700, 10),
labels = percent_format(accuracy = 1)) +
theme(legend.position = c(0.15, 0.75),
legend.title = element_blank())