Annual Macro-Economic database of the European COmmission (AMECO)
Data
Main Datasets
Info
- AMECO DATA FILE CODING pdf
In the AMECO data files, a series code such as EU27.1.0.0.0.NPTD consists of a country code at the beginning, the AMECO variable code at the end, and four numeric values representing, in order:
- TRN: Transformations over time
- AGG: Aggregation modes
- UNIT: Unit codes
- REF: Codes for relative performance
Labels for country and variable codes are included directly in the data file. The four numerical codes are explained in the following sections.
Other
Javascript
Flat
id | Title | .RData | .html |
---|---|---|---|
api | AMECO's API | NA | [2024-07-02] |
AVGDGP | Gap between actual and potential gross domestic product at 2015 reference levels - AVGDGP | 2023-10-05 | [2024-07-02] |
AVGDGT | Gap between actual and trend gross domestic product at 2015 reference levels - AVGDGT | 2022-02-02 | [2024-07-02] |
index-old | Annual Macro-Economic database of the European COmmission - AMECO | NA | [2024-07-02] |
OVGDP | Potential gross domestic product at 2015 reference levels - OVGDP | 2021-07-04 | [2024-07-02] |
PLCD | Nominal unit labour costs - total economy (Ratio of compensation per employee to real GDP per person employed.) - PLCD | 2022-02-02 | [2022-02-02] |
PLCDQ | Nominal unit labour costs, total economy :- Performance relative to the rest of 37 industrial countries - PLCDQ | 2022-02-02 | [2024-07-02] |
PLCM | Nominal unit labour costs - manufacturing industry - PLCM | 2021-07-01 | [2024-07-02] |
PMGN | Price deflator imports of goods - PMGN | 2021-01-31 | [2024-07-02] |
QLCD | Real unit labour costs - total economy (Ratio of compensation per employee to nominal GDP per person employed.) - QLCD | 2022-02-02 | [2024-07-02] |
session6 | "Session 6 - R-markdown" | NA | [2024-07-02] |
UBLGBPS | Structural balance of general government excluding interest :- Adjustment based on potential GDP Excessive deficit procedure - UBLGBPS | 2024-05-06 | [2024-07-02] |
ZNAWRU | Non-accelerating wage rate of unemployment - ZNAWRU | 2021-07-04 | [2024-07-02] |
ZUTN | Unemployment rate - total - Member States - definition EUROSTAT - ZUTN | 2021-07-04 | [2024-07-02] |
COU, COUNTRY
Code
%>%
ameco group_by(COU, COUNTRY) %>%
summarise(Nobs = n()) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(COUNTRY)),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Output gap
France, Italy, Spain
Code
%>%
ameco filter(VAR == "AVGDGP",
%in% c("FRA", "ESP", "ITA")) %>%
COU select(COUNTRY, date, value) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
mutate(value = value / 100) %>%
ggplot() + theme_minimal() + ylab("Output Gap (% of GDP)") + xlab("") +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = "none") +
scale_y_continuous(breaks = 0.01*seq(-60, 60, 1),
labels = scales::percent_format(accuracy = 1))
PLCDQ - Nominal unit labour costs: total economy :- Performance relative to the rest of 37 industrial countries
France, Germany
All
Code
%>%
ameco filter(VAR == "PLCDQ",
%in% c("FRA", "DEU"),
COU == "30",
CODE_4 == "437") %>%
CODE_5 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (total economy)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
1995-
Code
%>%
ameco filter(VAR == "PLCDQ",
%in% c("FRA", "DEU"),
COU == "30",
CODE_4 == "437") %>%
CODE_5 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
filter(date >= as.Date("1995-01-01")) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value / value[date == as.Date("1995-01-01")]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (total economy)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_vline(xintercept = as.Date("2011-01-01"),
linetype= "dashed") +
theme(legend.position = c(0.8, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
France, Germany, Spain, Italy
All
Code
%>%
ameco filter(VAR == "PLCDQ",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "30",
CODE_4 == "437") %>%
CODE_5 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (total economy)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
1999-
Code
%>%
ameco filter(VAR == "PLCDQ",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "30",
CODE_4 == "437") %>%
CODE_5 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
filter(date >= as.Date("2000-01-01")) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value/value[1]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (total economy)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = COUNTRY)) +
scale_color_manual(values = c("#002395", "#000000", "#009246", "#C60B1E")) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
HWCMW - Nominal compensation per employee: manufacturing industry
France, Germany
All
Code
%>%
ameco filter(VAR == "HWCMW",
%in% c("FRA", "DEU"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal compensation per employee: manufacturing") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.8, 0.1),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
1995-
Code
%>%
ameco filter(VAR == "HWCMW",
%in% c("FRA", "DEU"),
COU == "99",
CODE_4 >= as.Date("1995-01-01")) %>%
date select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal compensation per employee: manufacturing") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.8, 0.1),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
France, Germany, Spain, Italy
All
Code
%>%
ameco filter(VAR == "HWCMW",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value/value[1]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal compensation per employee: manufacturing industry") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 5))
1999-
Code
%>%
ameco filter(VAR == "HWCMW",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "99",
CODE_4 >= as.Date("1999-01-01")) %>%
date select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value/value[1]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal compensation per employee: manufacturing industry") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 5))
QLCM - Real unit labour costs: manufacturing industry
France, Germany
Code
%>%
ameco filter(VAR == "QLCM",
%in% c("FRA", "DEU")) %>%
COU select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Real unit labour costs (manufacturing)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.8, 0.1),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
France, Germany, Spain, Italy
###All
Code
%>%
ameco filter(VAR == "QLCM",
%in% c("FRA", "DEU", "ESP", "ITA")) %>%
COU select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Real unit labour costs (manufacturing)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
1999-
Code
%>%
ameco filter(VAR == "QLCM",
%in% c("FRA", "DEU", "ESP", "ITA")) %>%
COU select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value/value[1]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Real unit labour costs (manufacturing)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1999, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
PLCM - Nominal unit labour costs: manufacturing industry
France, Germany
All
Code
%>%
ameco filter(VAR == "PLCM",
%in% c("FRA", "DEU"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (manufacturing)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 10))
1990-
Code
%>%
ameco filter(VAR == "PLCM",
%in% c("FRA", "DEU"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
filter(date >= as.Date("1990-01-01")) %>%
ggplot() + ylab("Nominal unit labour costs (manufacturing)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.8, 0.2),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 10))
France, Germany, Spain, Italy
All
Code
%>%
ameco filter(VAR == "PLCM",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (manufacturing)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
1999-
Code
%>%
ameco filter(VAR == "PLCM",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value/value[1]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Coûts unitaires du travail, nominal (secteur manuf.)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() +
scale_x_date(breaks = seq(1999, 2023, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_4flags theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
1995-
Viridis Colors
Code
%>%
ameco filter(VAR == "PLCM",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
filter(date >= as.Date("1995-01-01")) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value/value[1]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (manufacturing)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_vline(xintercept = as.Date("2011-01-01"),
linetype= "dashed") +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
PLCD - Nominal unit labour costs: total economy (Ratio of compensation per employee to real GDP per person employed.)
France, Germany
All
Code
%>%
ameco filter(VAR == "PLCD",
%in% c("FRA", "DEU"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 10))
1995-
Viridis Colors
Code
%>%
ameco filter(VAR == "PLCD",
%in% c("FRA", "DEU"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
filter(date >= as.Date("1995-01-01"),
<= as.Date("2020-01-01")) %>%
date group_by(COUNTRY) %>%
mutate(value = 100*value/value[date == as.Date("1995-01-01")]) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 10))
1999-
Viridis Colors
Code
%>%
ameco filter(VAR == "PLCD",
%in% c("FRA", "DEU"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value/value[date == as.Date("1999-01-01")]) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_2flags +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 10))
Flags
Code
%>%
ameco filter(VAR == "PLCD",
%in% c("FRA", "DEU", "ITA"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
filter(date >= as.Date("1995-01-01"),
<= as.Date("2020-01-01")) %>%
date group_by(COUNTRY) %>%
mutate(value = 100*value/value[date == as.Date("1995-01-01")]) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Coûts Unitaires du Travail (Source: AMECO)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_3flags +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
France, Germany, Spain, Italy
All
Code
%>%
ameco filter(VAR == "PLCD",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (total economy)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
1999-
Code
%>%
ameco filter(VAR == "PLCD",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
filter(date >= as.Date("1999-01-01")) %>%
group_by(COUNTRY) %>%
mutate(value = 100*value/value[1]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Coûts unitaires du travail, nominal (total)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1901, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
+
add_4flags theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))
1995-
Code
%>%
ameco filter(VAR == "PLCD",
%in% c("FRA", "DEU", "ESP", "ITA"),
COU == "99") %>%
CODE_4 select(COUNTRY, date, value, CODE) %>%
arrange(COUNTRY, date) %>%
filter(date >= as.Date("1995-01-01"),
<= as.Date("2020-01-01")) %>%
date group_by(COUNTRY) %>%
mutate(value = 100*value/value[1]) %>%
left_join(colors, c("COUNTRY" = "country")) %>%
ggplot() + ylab("Nominal unit labour costs (total economy)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = value, color = color)) +
scale_color_identity() + add_4flags +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_vline(xintercept = as.Date("2011-01-01"),
linetype= "dashed") +
theme(legend.position = c(0.2, 0.8),
legend.title = element_blank()) +
scale_y_continuous(breaks = seq(-60, 300, 5))