Math Review
 UCLA - Econ 102 - Fall 2018
 François Geerolf

Contents

Taylor Approximations
Growth Rates

Taylor Approximations

Multiplication. If x and y are small, then:

$$
(1+x)(1+y) \approx 1+x+y
$$

Proof. We have:

$$
(1+x)(1+y)=1+x+y+x y
$$

When x and y are both small, then $x y$ is negligible (it is a second order term), which gives the result:

$$
(1+x)(1+y) \approx 1+x+y
$$

Ratio. If x and y are small, then:

$$
\frac{1+x}{1+y} \approx 1+x-y
$$

Proof. We have:

$$
\frac{1}{1+y}=1-y+y^{2}-y^{3}+\ldots
$$

When x and y are both small, all terms of the product are negligible except for first-order terms:

$$
\frac{1+x}{1+y} \approx 1+x-y
$$

Power. If x is small, then:

$$
(1+x)^{n} \approx 1+n x
$$

Proof. For $n=1$, we know that $(1+x)^{1}=1+x$ (obviously). Assume that the approximation is true for n, or that $(1+x)^{n} \approx 1+n x$, let's prove that it is true for $n+1$:

$$
\begin{aligned}
(1+x)^{n+1} & =(1+x)^{n}(1+x) \\
& \approx(1+n x)(1+x) \\
& \approx 1+(n+1) x+n x^{2} \\
(1+x)^{n+1} & \approx 1+(n+1) x
\end{aligned}
$$

which proves the proposition for $n+1$. Thus, the Taylor approximation is true for any $n \in \mathbb{N}$.

Growth Rates

Multiplication. If g_{X} and g_{Y} are small, then:

$$
g_{X Y}=g_{X}+g_{Y}
$$

Proof. The growth rate g_{X} of X is given by $g_{X}=X_{t+1} / X_{t}-1$. Thus, the growth rate of $X Y$ is:

$$
\begin{aligned}
g_{X Y} & =\frac{X_{t+1} Y_{t+1}}{X_{t} Y_{t}}-1 \\
& =\frac{X_{t+1}}{X_{t}} \frac{Y_{t+1}}{Y_{t}}-1 \\
& =\left(1+g_{X}\right)\left(1+g_{Y}\right)-1 \\
& \approx 1+g_{X}+g_{Y}-1 \\
g_{X Y} & \approx g_{X}+g_{Y},
\end{aligned}
$$

where we have used the above Taylor approximation with $\left(1+g_{X}\right)\left(1+g_{Y}\right) \approx 1+g_{X}+g_{Y}$.
Ratio. If g_{X} and g_{Y} are small, then:

$$
g_{X / Y}=g_{X}-g_{Y}
$$

Proof. The growth rate g_{X} of X is given by $g_{X}=X_{t+1} / X_{t}-1$. Thus, the growth rate of $X Y$ is:

$$
\begin{aligned}
g_{X / Y} & =\frac{X_{t+1} / Y_{t+1}}{X_{t} / Y_{t}}-1 \\
& =\frac{X_{t+1}}{X_{t}} \frac{Y_{t}}{Y_{t+1}}-1 \\
& =\frac{1+g_{X}}{1+g_{Y}}-1 \\
& \approx 1+g_{X}-g_{Y}-1 \\
g_{X / Y} & \approx g_{X}-g_{Y},
\end{aligned}
$$

where we have used the above Taylor approximation with $\left(1+g_{X}\right) /\left(1+g_{Y}\right) \approx 1+g_{X}-g_{Y}$.

