%>%
County_MedianValuePerSqft_AllHomes group_by(SizeRank,RegionID, RegionName, State, Metro, StateCodeFIPS, MunicipalCodeFIPS) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
County_MedianValuePerSqft_AllHomes mutate(year = date %>% paste %>% substr(1, 4) %>% as.numeric,
month = date %>% paste %>% substr(6, 7) %>% as.numeric,
county_code = StateCodeFIPS*1000 + MunicipalCodeFIPS,
date = paste0(date, "-01") %>% as.Date) %>%
filter(date == as.Date("2007-10-01")) %>%
select(county_code, value) %>%
left_join(county_code_name %>%
select(county_code, subregion = county_name3, region = state_name3),
by = "county_code") %>%
right_join(county %>%
filter(region == "california"),
by = c("region", "subregion")) %>%
ggplot(aes(long, lat, group = group)) +
geom_polygon(aes(fill = value), colour = alpha("black", 1/2), size = 0.2) +
scale_fill_viridis_c(labels = scales::dollar_format(accuracy = 1),
na.value = "white",
breaks = seq(0,3000, 250),
values = c(0, 0.2, 0.4, 0.6, 0.8, 1)) +
theme_void() +
theme(legend.position = c(0.8, 0.8)) +
labs(fill = "Price Per\nSq Feet") + coord_fixed(ratio = 1)
%>%
County_MedianValuePerSqft_AllHomes mutate(year = date %>% paste %>% substr(1, 4) %>% as.numeric,
month = date %>% paste %>% substr(6, 7) %>% as.numeric,
county_code = StateCodeFIPS*1000 + MunicipalCodeFIPS,
date = paste0(date, "-01") %>% as.Date) %>%
filter(date == as.Date("2010-10-01")) %>%
select(county_code, value) %>%
left_join(county_code_name %>%
select(county_code, subregion = county_name3, region = state_name3),
by = "county_code") %>%
right_join(county %>%
filter(region == "california"),
by = c("region", "subregion")) %>%
ggplot(aes(long, lat, group = group)) +
geom_polygon(aes(fill = value), colour = alpha("black", 1/2), size = 0.2) +
scale_fill_viridis_c(labels = scales::dollar_format(accuracy = 1),
na.value = "white",
breaks = seq(0,3000, 250),
values = c(0, 0.2, 0.4, 0.6, 0.8, 1)) +
theme_void() +
theme(legend.position = c(0.8, 0.8)) +
labs(fill = "Price Per\nSq Feet") + coord_fixed(ratio = 1)
%>%
County_MedianValuePerSqft_AllHomes mutate(year = date %>% paste %>% substr(1, 4) %>% as.numeric,
month = date %>% paste %>% substr(6, 7) %>% as.numeric,
county_code = StateCodeFIPS*1000 + MunicipalCodeFIPS,
date = paste0(date, "-01") %>% as.Date) %>%
filter(date == as.Date("2019-10-01")) %>%
select(county_code, value) %>%
left_join(county_code_name %>%
select(county_code, subregion = county_name3, region = state_name3),
by = "county_code") %>%
right_join(county %>%
filter(region == "california"),
by = c("region", "subregion")) %>%
ggplot(aes(long, lat, group = group)) +
geom_polygon(aes(fill = value), colour = alpha("black", 1/2), size = 0.2) +
scale_fill_viridis_c(labels = scales::dollar_format(accuracy = 1),
na.value = "white",
breaks = seq(0,3000, 250),
values = c(0, 0.2, 0.4, 0.6, 0.8, 1)) +
theme_void() +
theme(legend.position = c(0.8, 0.8)) +
labs(fill = "Price Per\nSq Feet") + coord_fixed(ratio = 1)