tibble(LAST_DOWNLOAD = as.Date(file.info("~/Dropbox/website/data/oecd/EPL_R.RData")$mtime)) %>%
print_table_conditional()
LAST_DOWNLOAD |
---|
2023-09-09 |
LAST_COMPILE |
---|
2024-04-16 |
obsTime | Nobs |
---|---|
2019 | 129 |
EPL_R %>%
left_join(EPL_R_var$SERIES, by = "SERIES") %>%
group_by(SERIES, Series) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
SERIES | Series | Nobs |
---|---|---|
EPR_V1 | Version 1 (1985-2019) | 1129 |
EPR_V3 | Version 3 (2008-2019) | 531 |
EPR_V4 | Version 4 (2013-2019) | 293 |
EPL_R %>%
left_join(EPL_R_var$COUNTRY, by = "COUNTRY") %>%
group_by(COUNTRY, Country) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
EPL_R %>%
filter(SERIES == "EPR_V1",
COUNTRY %in% c("FRA", "ITA", "DEU")) %>%
left_join(EPL_R_var$COUNTRY, by = "COUNTRY") %>%
year_to_date %>%
left_join(colors, by = c("Country" = "country")) %>%
rename(Location = Country) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
xlab("") + ylab("Strictness of employment protection") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = seq(0, 6, .1))
EPL_R %>%
filter(SERIES == "EPR_V1",
COUNTRY %in% c("AUS", "GBR", "USA")) %>%
left_join(EPL_R_var$COUNTRY, by = "COUNTRY") %>%
year_to_date %>%
left_join(colors, by = c("Country" = "country")) %>%
rename(Location = Country) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_3flags + theme_minimal() +
xlab("") + ylab("Strictness of employment protection") +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_y_continuous(breaks = seq(0, 5, 0.2))
EPL_R %>%
filter(SERIES == "EPR_V1",
COUNTRY %in% c("AUS", "GBR", "USA", "FRA", "ITA", "DEU", "ESP")) %>%
left_join(EPL_R_var$COUNTRY, by = "COUNTRY") %>%
year_to_date %>%
left_join(colors, by = c("Country" = "country")) %>%
rename(Location = Country) %>%
ggplot(.) + geom_line(aes(x = date, y = obsValue, color = color)) +
scale_color_identity() + add_7flags + theme_minimal() +
xlab("") + ylab("Strictness of employment protection") +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 5, 0.2))