ECONSH_D %>%
left_join(ECONSH_D_var$EMPSTAT, by = "EMPSTAT") %>%
group_by(EMPSTAT, Empstat) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
EMPSTAT | Empstat | Nobs |
---|---|---|
TE | Total employment | 10069 |
DE | Dependent employment | 8189 |
ECONSH_D %>%
left_join(ECONSH_D_var$SEX, by = "SEX") %>%
group_by(SEX, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
SEX | Sex | Nobs |
---|---|---|
MW | All persons | 6203 |
MEN | Men | 6147 |
WOMEN | Women | 5908 |
ECONSH_D %>%
left_join(ECONSH_D_var$AGE, by = "AGE") %>%
group_by(AGE, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
AGE | Age | Nobs |
---|---|---|
900000 | Total | 4756 |
2554 | 25 to 54 | 4654 |
1524 | 15 to 24 | 4449 |
5599 | 55+ | 4399 |
ECONSH_D %>%
left_join(ECONSH_D_var$COUNTRY, by = "COUNTRY") %>%
group_by(COUNTRY, Country) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
ECONSH_D %>%
filter(SEX == "MW",
COUNTRY == "FRA",
obsTime %in% paste0(seq(1991, 2021, 5))) %>%
left_join(ECONSH_D_var$EMPSTAT, by = "EMPSTAT") %>%
left_join(ECONSH_D_var$AGE, by = "AGE") %>%
select(Empstat, Age, obsTime, obsValue) %>%
spread(obsTime, obsValue) %>%
print_table_conditional
Empstat | Age | 1991 | 1996 | 2001 | 2006 | 2011 |
---|---|---|---|---|---|---|
Dependent employment | 15 to 24 | 14.3 | 13.1 | 14.4 | 2.1 | 2.0 |
Dependent employment | 25 to 54 | 68.1 | 65.9 | 27.3 | 18.5 | 13.0 |
Dependent employment | 55+ | 3.4 | 4.2 | 0.4 | 1.0 | 1.8 |
Dependent employment | Total | 85.8 | 83.2 | 42.1 | 21.6 | 16.8 |
Total employment | 15 to 24 | 42.9 | 39.9 | 14.4 | 2.1 | 2.0 |
Total employment | 25 to 54 | 206.9 | 201.1 | 28.3 | 18.7 | 13.0 |
Total employment | 55+ | 10.8 | 13.4 | 0.5 | 1.0 | 1.8 |
Total employment | Total | 260.6 | 254.4 | 43.2 | 21.8 | 16.8 |