rmi_m %>%
select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
scale_color_manual(values = viridis(8)[1:7]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RMI en euros") + xlab("")
rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
scale_color_manual(values = viridis(8)[1:7]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RSA en euros") + xlab("")
rmi_m %>%
select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RMI / RSA en euros") + xlab("")
rmi_m %>%
select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
ungroup %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 700, 10)) +
ylab("Montant du RMI / RSA (100 = 1992)") + xlab("")
rmi_m %>%
select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
filter(date >= as.Date("1992-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RMI / RSA en euros") + xlab("")
rmi_m %>%
select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
filter(date >= as.Date("1992-01-01")) %>%
ungroup %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 700, 10)) +
ylab("Montant du RMI / RSA (100 = 1992)") + xlab("")
rmi_m %>%
select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
filter(date >= as.Date("1996-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RMI / RSA en euros") + xlab("")
rmi_m %>%
select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
filter(date >= as.Date("1996-01-01")) %>%
ungroup %>%
arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 700, 10)) +
ylab("Montant du RMI / RSA (100 = 1996)") + xlab("")