data_alter_eco <- indicefp %>%
select(date, point_indice_en_euros) %>%
add_row(date = as.Date("2022-01-01"), point_indice_en_euros = 56.23230) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
ungroup %>%
filter(month(date) == 1,
day(date) == 1) %>%
left_join(cpi2, by = "date") %>%
filter(date >= as.Date("1996-01-01")) %>%
transmute(date,
value_cpih = value/cpih,
value_cpi = value/cpi) %>%
transmute(date,
`Valeur du Point d'Indice de la Fonction Publique par rapport à 1996 (IPCH, Eurostat)` = value_cpih/value_cpih[1]-1,
`Valeur du Point d'Indice de la Fonction Publique par rapport à 1996 (IPC, INSEE)` = value_cpi/value_cpi[1]-1)
write_csv(data_alter_eco, file = "data_alter_eco.csv")
data_alter_eco %>%
gather(variable, value, -date) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.position = c(0.43, 0.1),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 2),
labels = percent_format(acc = 1)) +
ylab("Valeur du Point Indice Fonction Publique vs. 1996") + xlab("")