sts_sepr_m %>%
left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
s_adj | S_adj | Nobs |
---|---|---|
CA | Calendar adjusted data, not seasonally adjusted data | 179391 |
SCA | Seasonally and calendar adjusted data | 169677 |
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 83964 |
sts_sepr_m %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
unit | Unit | Nobs |
---|---|---|
I15 | Index, 2015=100 | 263559 |
PCH_SM | Percentage change compared to same period in previous year | 85076 |
PCH_PRE | Percentage change on previous period | 84397 |
sts_sepr_m %>%
left_join(indic_bt, by = "indic_bt") %>%
group_by(indic_bt, Indic_bt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
indic_bt | Indic_bt | Nobs |
---|---|---|
PROD | Volume index of production | 433032 |
sts_sepr_m %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
sts_sepr_m %>%
filter(nace_r2 == "G-N_STS",
unit == "I15",
s_adj == "SCA",
time %in% c("2019M11", "2020M02", "2020M03", "2020M04", "2020M05", "2020M08", "2020M11"),
!(geo %in% c("IE", "EU28"))) %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M11"]) %>%
left_join(geo, by = "geo") %>%
spread(time, values) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
arrange(`2020M04`) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}