tibble(LAST_DOWNLOAD = as.Date(file.info("~/Dropbox/website/data/eurostat/sts_inpi_m.RData")$mtime)) %>%
print_table_conditional()
LAST_DOWNLOAD |
---|
2022-11-17 |
LAST_COMPILE |
---|
2022-11-17 |
sts_inpi_m %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2022M10 | 666 |
sts_inpi_m %>%
left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
s_adj | S_adj | Nobs |
---|---|---|
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 3193698 |
sts_inpi_m %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
unit | Unit | Nobs |
---|---|---|
PCH_PRE | Percentage change on previous period | 895831 |
I15 | Index, 2015=100 | 888862 |
PCH_SM | Percentage change compared to same period in previous year | 851208 |
I10 | Index, 2010=100 | 557797 |
sts_inpi_m %>%
left_join(indic_bt, by = "indic_bt") %>%
group_by(indic_bt, Indic_bt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
indic_bt | Indic_bt | Nobs |
---|---|---|
IMPR | Import price index | 1643632 |
IMPX | Import price index - non euro area | 851962 |
IMPZ | Import price index - euro area | 698104 |
sts_inpi_m %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
sts_inpi_m %>%
filter(nace_r2 == "C",
unit == "I15",
geo %in% c("FR", "DE", "IT"),
indic_bt == "IMPR") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M03"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab(" Import price index") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2013-01-01")) %>%
mutate(date = as.Date("2013-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 2))
sts_inpi_m %>%
filter(nace_r2 == "C",
unit == "I15",
geo %in% c("FR", "DE", "IT"),
indic_bt == "IMPR") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M03"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
filter(date >= as.Date("2005-01-01")) %>%
ggplot() + ylab(" Import price index") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2013-01-01")) %>%
mutate(date = as.Date("2013-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 2))
sts_inpi_m %>%
filter(nace_r2 == "B062",
unit == "I15",
geo %in% c("FR", "DE", "IT"),
indic_bt == "IMPR") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M03"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab(" Import price index") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2013-01-01")) %>%
mutate(date = as.Date("2013-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 2))