ei_isrt_m %>%
left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
print_table_conditional
nace_r2 | Nace_r2 | Nobs |
---|---|---|
G45 | Wholesale and retail trade and repair of motor vehicles and motorcycles | 53432 |
G47 | Retail trade, except of motor vehicles and motorcycles | 96208 |
G473 | Retail sale of automotive fuel in specialised stores | 89916 |
G47_FOOD | Retail sale of food, beverages and tobacco | 93270 |
G47_NFOOD | Retail sale of non-food products (including fuel) | 45542 |
G47_NFOOD_X_G473 | Retail sale of non-food products (except fuel) | 93294 |
G47_X_G473 | Retail trade, except of motor vehicles, motorcyles and fuel | 96868 |
ei_isrt_m %>%
left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
s_adj | S_adj | Nobs |
---|---|---|
SCA | Seasonally and calendar adjusted data | 283918 |
CA | Calendar adjusted data, not seasonally adjusted data | 269851 |
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 14761 |
ei_isrt_m %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
unit | Unit | Nobs |
---|---|---|
I15 | Index, 2015=100 | 305904 |
I21 | Index, 2021=100 | 262626 |
ei_isrt_m %>%
left_join(indic, by = "indic") %>%
group_by(indic, Indic) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional
indic | Indic | Nobs |
---|---|---|
TOVT | Index of turnover - Total | 273116 |
TOVV | Index of deflated turnover | 264978 |
IS-EPI | Number of persons employed index | 30436 |
ei_isrt_m %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
ei_isrt_m %>%
filter(nace_r2 == "G47",
geo %in% c("FR", "DE", "IT"),
indic == "TOVT",
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M12"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab("Retail trade, except of motor vehicles and motorcycles") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2004-01-01")) %>%
mutate(date = as.Date("2004-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
ei_isrt_m %>%
filter(nace_r2 == "G45",
geo %in% c("FR", "DE", "IT"),
indic == "TOVT",
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M12"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab(" Wholesale and retail trade and repair of motor vehicles and motorcycles") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2004-01-01")) %>%
mutate(date = as.Date("2004-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
ei_isrt_m %>%
filter(nace_r2 == "G47_FOOD",
geo %in% c("FR", "DE", "IT"),
indic == "TOVT",
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M12"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab("Retail sale of food, beverages and tobacco") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2004-01-01")) %>%
mutate(date = as.Date("2004-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
ei_isrt_m %>%
filter(nace_r2 == "G47_NFOOD",
geo %in% c("FR", "DE", "IT"),
indic == "TOVT",
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M12"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab(" Retail sale of non-food products (including fuel)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2004-01-01")) %>%
mutate(date = as.Date("2004-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
ei_isrt_m %>%
filter(nace_r2 == "G47_NFOOD_X_G473",
geo %in% c("FR", "DE", "IT"),
indic == "TOVT",
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M12"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab("Retail sale of non-food products (except fuel)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2004-01-01")) %>%
mutate(date = as.Date("2004-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
ei_isrt_m %>%
filter(nace_r2 == "G47_X_G473",
geo %in% c("FR", "DE", "IT"),
indic == "TOVT",
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M12"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab("Retail trade, except of motor vehicles, motorcyles and fuel") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2004-01-01")) %>%
mutate(date = as.Date("2004-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
ei_isrt_m %>%
filter(nace_r2 == "G473",
geo %in% c("FR", "DE", "IT"),
indic == "TOVT",
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2019M12"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
month_to_date %>%
ggplot() + ylab("Retail sale of automotive fuel in specialised stores") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2005-01-01")) %>%
mutate(date = as.Date("2005-01-01"),
image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))