file | LAST_DOWNLOAD |
---|---|
T20100_Q | 2022-10-09 |
T20100_A | 2022-10-09 |
LAST_COMPILE |
---|
2024-02-11 |
date | Nobs |
---|---|
2022-06-30 | 42 |
T20100_A %>%
mutate(table = "T20100") %>%
bind_rows(T10105_A %>%
mutate(table = "T10105")) %>%
year_to_date %>%
arrange(date, LineNumber) %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineDescription == "Gross domestic product"]) %>%
filter(LineNumber %in% c(27, 1),
table == "T20100") %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription, linetype = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1929-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1930, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
ylab("% of GDP") + xlab("") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1))
T20100_A %>%
year_to_date %>%
arrange(date, LineNumber) %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 27]) %>%
filter(LineNumber %in% c(12, 13, 14, 15)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription, linetype = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1929-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1930, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
ylab("% of Disposable personal income") + xlab("") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 25, 1),
labels = scales::percent_format(accuracy = 1))
T20100_A %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 27]) %>%
filter(LineNumber %in% c(26, 6)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription, linetype = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.75, 0.2)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1925, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
ylab("% of Disposable personal income") + xlab("") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 90, 2),
labels = scales::percent_format(accuracy = 1))
T20100_A %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 27]) %>%
filter(LineNumber %in% c(3, 4, 5)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription, linetype = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.45, 0.5)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1925, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
ylab("% of Disposable personal income") + xlab("") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 90, 10),
labels = scales::percent_format(accuracy = 1))
T20100_A %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 27]) %>%
filter(LineNumber %in% c(2, 3, 6, 9)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription, linetype = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.45, 0.5)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1925, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
ylab("% of Disposable personal income") + xlab("") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 90, 10),
labels = scales::percent_format(accuracy = 1))
T20100_A %>%
year_to_date %>%
group_by(date) %>%
mutate(value = DataValue/DataValue[LineNumber == 27]) %>%
filter(LineNumber %in% c(25, 17, 26)) %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value, color = LineDescription, linetype = LineDescription)) +
theme(legend.title = element_blank(),
legend.position = c(0.35, 0.9)) +
geom_rect(data = nber_recessions %>%
filter(Peak > as.Date("1928-01-01")),
aes(xmin = Peak, xmax = Trough, ymin = 0, ymax = +Inf),
fill = 'grey', alpha = 0.5) +
scale_x_date(breaks = seq(1925, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
ylab("% of Disposable personal income") + xlab("") +
scale_color_manual(values = viridis(5)[1:4]) +
scale_y_continuous(breaks = 0.01*seq(0, 90, 2),
labels = scales::percent_format(accuracy = 1))
T20100_A %>%
year_to_date %>%
mutate(year = year(date)) %>%
filter(year %in% c(1938, 1958, 1978, 1998, 2018)) %>%
group_by(year) %>%
mutate(value = round(100*DataValue/DataValue[LineNumber == 1], 1)) %>%
ungroup %>%
select(2, 3, 6, 7) %>%
spread(year, value) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}
T20100_A %>%
year_to_date %>%
mutate(year = year(date)) %>%
filter(year %in% c(1938, 1958, 1978, 1998, 2018)) %>%
group_by(year) %>%
mutate(value = round(100*DataValue/DataValue[LineNumber == 27], 1)) %>%
ungroup %>%
select(2, 3, 6, 7) %>%
spread(year, value) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}
T20100_A %>%
year_to_date %>%
mutate(year = year(date)) %>%
filter(year %in% c(1938, 1958, 1978, 1998, 2018)) %>%
group_by(year) %>%
mutate(value = round(DataValue/1000)) %>%
ungroup %>%
select(2, 3, 6, 7) %>%
spread(year, value) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}
Comments
Supplements to wages and salaries (14%) = acyclical.
Dividends are only very mildly cyclical?